
Leveraging the Usage of GPUs in SAR

Processing for the NISAR Mission
Joshua Cohen (334D) and Piyush Agram (334D)

j p l . n a s a . g o v

Outline

• NASA-ISRO Synthetic Aperture Radar (NISAR)

mission

• InSAR Scientific Computing Environment (ISCE)

• Topographic correction for SAR imagery

• Upgrading from a Single-Instruction/Single-Data

(SISD) to a Single-Instruction/Multiple-Data

(SIMD) design

• Benchmarking results and planned future work

4/11/17 2

j p l . n a s a . g o v

Mission Overview, Background

NASA-ISRO Synthetic Aperture Radar (NISAR)

4/11/17 3

j p l . n a s a . g o v

Mission Overview, Big Data Problem

NASA-ISRO Synthetic Aperture Radar (NISAR)

Need fast, large-scale scientific processing

4

j p l . n a s a . g o v

Interferometric SAR (InSAR) Processing Workflow

NASA-ISRO Synthetic Aperture Radar (NISAR)

• Multiple

compartmentalized steps

• Each step might take

multiple inputs and

produce as much if not

significantly more output

data
– Ex: “Pixel-by-pixel lat, lon,

height” takes a radar image,

a DEM, and orbit information

and produces 5-7 output

images of the same size as

the input image

4/11/17 5

Sentinel-1 InSAR processing workflow example (Fattahi et al,

2016)

j p l . n a s a . g o v

Overview, Modular Design

InSAR Scientific Computing Environment (ISCE)

A flexible framework of InSAR software applications and algorithms

4/11/17 6

Groups of SAR

processing-specific

steps are packaged

into plug-and-play

modules

Example of an ISCE “module”

j p l . n a s a . g o v

InSAR Processing Steps

InSAR Scientific Computing Environment (ISCE)

• Combination of legacy and novel applications to handle geocoding,

focusing, calibration, correction, and more

• Four InSAR processing modules relevant to this talk:

– Topo: Forward mapping geometry algorithm to convert an image in slant-range

coordinates to ground-range coordinates, as well as correct for topography

– Ampcor: Normalized image cross-correlation algorithm to generate a 2D

coregistration polynomial

– Geo2rdr: Inverse of the forward mapping geometry algorithm to convert an image

in ground-range coordinates to radar slant-range coordinates

– Resamp_slc: Image correction algorithm to resample a slave image against its

master image using coregistration polynomials or offset fields

• Each of the four modules is a good candidate for “GPU-ization”

4/11/17 7

j p l . n a s a . g o v

Key Feature: OpenMP Parallelization

InSAR Scientific Computing Environment (ISCE)

• Many algorithms repetitively apply a set of operations to single pixels

• Basic acceleration – leverage the cores in your CPU, split the

repetition

• OpenMP is a set of code “decorators” that can apply basic automatic

parallelization

4/11/17 8

#pragma omp parallel for

for (i=0; i<100; i++) {

…some work…

}

(assuming 2 cores)

Thread 1: for (i=0; i<25; i++) { …some work… }

Thread 2: for (i=26; i<50; i++) { …some work… }

Thread 3: for (i=51; i<75; i++) { …some work… }

Thread 4: for (i=76; i<100; i++) { …some work… }

j p l . n a s a . g o v

Project Goals

Driving question: Can we develop new versions of existing

ISCE modules (with an eye towards processing large

images like NISAR’s) that:

– Are vastly more parallelized than those using OpenMP

– Are algorithmically similar to the original modules

– Guarantee the same numerical precision as the original modules

This talk focuses on one highly parallelizable and

computationally intensive module: “Topo”

4/11/17 9

j p l . n a s a . g o v

Overview

ISCE’s Forward Geometry “Topo” Module

• Standard SAR processing module to convert a given input image in slant-

range coordinates to corresponding ground-range coordinates

4/11/17 10Ground Range

• Module essentially solves:

𝑹𝑔𝑟𝑜𝑢𝑛𝑑 ∝ 𝑹𝑠𝑙𝑎𝑛𝑡 ∙ sin 𝜽𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒
for each pixel in the image using a reference DEM

• Corrects for shadow, layover, foreshortening effects

• Fortran algorithm took up to ~90 minutes for a large

Sentinel-1A SLC (roughly 20,000 x 60,000 pixels), even

with OpenMP parallelization

• Forming an interferogram needs two runs of Topo, so for

NISAR would need ~3 hours for this step alone

𝐶′𝐷′ ≅ 𝐶𝐷

𝐵′𝐶′ < 𝐵𝐶

𝐴′𝐵′ ≪ 𝐴𝐵

j p l . n a s a . g o v

SISD Algorithm Design

Single-Instruction/Single-Data to /Multiple-Data

• In SISD, a single algorithm

operates on single pixels

• General purpose CPUs are

inherently SISD optimized

• For a given algorithm, wall-clock

runtime scales directly with number

of pixels

• Can be characterized by:

4/11/17 11

p i x e l s . . .

Algorithm

To files…

1 2 3

Algorithm Input

Step 1 Pixel 1

Step 2 Pixel 1

Step 3 Pixel 1

… Pixel 1

Write-to-file Pixel 1

Step 1 Pixel 2

Step 2 Pixel 2

etc…

j p l . n a s a . g o v

SIMD Algorithm Design

Single-Instruction/Single-Data to /Multiple-Data

• In SIMD, many identical copies

of an algorithm operate on

multiple “data streams”

• Instruction execution is slower

than that of CPUs due to

explicit operations that are

performed implicitly in

CPU hardware for SISD…

• …but “hyper-parallelism” can

easily mitigate this slowdown
•

• Characterized by:

4/11/17 12

Note: OpenMP is pseudo-SIMD, and already implemented in ISCE

To files…

p i x e l s . . .

3 2 1
Algorithm “Copy” 1

Algorithm “Copy” 2

Algorithm “Copy” 3

...

Algorithm AC 1 Input AC 2 Input AC 3 Input …

Step 1 Pixel 1 Pixel 2 Pixel 3 …

… Pixel 1 Pixel 2 Pixel 3 …

Write-to-file Pixel 1 Pixel 2 Pixel 3 …

Step 1 Pixel 4 Pixel 5 Pixel 6 …

etc…

j p l . n a s a . g o v

GPU-based SAR Processing

Single-Instruction/Single-Data to /Multiple-Data

• GPUs have shown to be effective accelerators for standard SAR

image formation and processing before, ex:

– “Synthetic Aperture Radar imaging on a CUDA-enabled mobile platform” (Fatica

and Phillips, 2014) – SAR image formation and L1 processing on an embedded

GPU platform

– “SAR Image Processing using GPU” (Maddikonda and Sundaram, 2014) – SAR

L1.5 image processing, Digital Beam Forming, applying a “smoothing” filter

(denoising)

– “Techniques for Mapping Synthetic Aperture Radar Processing Algorithms to

Multi-GPU Clusters” (Hayden et al, 2012) – SAR L1 image formation and

processing, multi-GPU processing load distribution

• Question: Can we extend these types of results by accelerating

InSAR (at least L2) processing steps such as geocoding and

coregistration using GPU-enabled algorithms?

4/11/17 13

j p l . n a s a . g o v

SISD-to-SIMD Module Conversion

Single-Instruction/Single-Data to /Multiple-Data

• For ISCE specifically, four modules were identified for GPU algorithm

development

– Topo , Ampcor , Resamp_slc , Geo2rdr

4/11/17 14

• GPU modules were developed

with 3 steps:

– Refactor legacy Fortran code

and create an object-oriented

C++ equivalent

– Identify and examine the core

algorithm, and develop a new

GPU-accelerated CUDA code

– Develop module framework to

implement CPU or GPU code

depending GPU availability

j p l . n a s a . g o v

Simplicity, Similarity, Precision

Development Foci

• Simplicity – To benchmark worst-case scenario, few CUDA- or

GPU-specific optimizations applied

– Example: Some advanced CUDA implementations allow for “dynamic

parallelism”, where a set of threads within a parallelized “kernel” can each spawn

their own kernel of parallel threads. Potentially faster, but more complex

• Similarity – To allow for easier parallel codebase maintenance,

algorithms kept as identical as possible

– Example: Not replacing known functions with unknown ones from the CUDA

math libraries, e.g. a = sqrt(pow(b[0],2) + pow(b[1],2) + pow(b[2],2)) (known) versus

a = norm(3, b) (CUDA math library)

• Precision – To ensure that results align with expected values from

C++ algorithm, refrain from implementing non-double-precision

functions

– Example: CUDA math library contains “intrinsics” which are GPU-optimized

versions of standard functions, at the potential cost of IEEE-754 compliant

precision

4/11/17 15

j p l . n a s a . g o v

“Topo” Timing Results

Benchmarking Results

• Two test scenes used:

– COSMO-SkyMed; 40 km x 40 km; ~4 x 108 pixels

– Sentinel-1A (NISAR-scale); 240 km x 240 km; ~1.2 x 109 pixels

• Hardware details:

– CPU: High-frequency Intel Xeon E5-2670, 12 threads enabled

– GPU: ½ NVIDIA Tesla K80, 1 GK210B GPU and 12 GB memory

• GPU runtime limited by AWS GovCloud I/O throttling,

limited memory bus speeds (common to all GPUs)

4/11/17 16

j p l . n a s a . g o v

Rough “Topo” Implementation Costs

Benchmarking Results

4/11/17 17

CPU GRID K520 Tesla K80

Runtime

(COSMO-SkyMed

scale)
18 minutes 3 minutes 30 seconds

Runtime

(NISAR/Sentinel-

scale)
82 minutes (est.) 20 minutes 3 minutes

Total “Topo” Runtime

(1400 NISAR-scale

interferograms)
1913.333 hours 466.666 hours 70 hours

Cost (per node) $.702 / hour $.702 / hour $.900 / hour

Estimated # of nodes

per day
80 20 3

Estimated cost per

day
$1,347.84 $336.96 $64.80

Total Speedup 1x ~5x ~30x

j p l . n a s a . g o v

Summary

• GPU implementation of radar-to-ground coordinate mapping show

~30x speed improvement over OpenMP implementation on a CPU

• Further optimizations are possible, at the cost of added complexity

and dissimilarity to original code

• Three other modules have been “GPU-ized” with similar speedup in

all cases

• Module development time decreased significantly as most of the

code development focused on creating the proper logical structure

for the algorithms

– Note that these logical structures translated to other algorithms fairly easily

4/11/17 18

j p l . n a s a . g o v

“GPU-izing” the SAR processor

Planned Future Work

• Plan to implement several algorithms – range-doppler,

omega-K, hybrid approaches

• Must address large (30,000 x 30,000) images with large

synthetic aperture convolution kernels

• Must address non-uniform sampling along-track for

“SweepSAR” implementation

• Should be consistent with simplicity, similarity, and

precision principles previously described

• Leverage published GPU methods for SAR processing

4/11/17 19

Questions?

jp l .nasa.gov

